Importance of Attenuation Correction (AC) for Small Animal PET Imaging.

نویسندگان

  • Henrik H El Ali
  • Rasmus Poul Bodholdt
  • Jesper Tranekjær Jørgensen
  • Rebecca Myschetzky
  • Andreas Kjaer
چکیده

UNLABELLED The purpose of this study was to investigate whether a correction for annihilation photon attenuation in small objects such as mice is necessary. The attenuation recovery for specific organs and subcutaneous tumors was investigated. A comparison between different attenuation correction methods was performed. METHODS Ten NMRI nude mice with subcutaneous implantation of human breast cancer cells (MCF-7) were scanned consecutively in small animal PET and CT scanners (MicroPET(TM) Focus 120 and ImTek's MicroCAT(TM) II). CT-based AC, PET-based AC and uniform AC methods were compared. RESULTS The activity concentration in the same organ with and without AC revealed an overall attenuation recovery of 9-21% for MAP reconstructed images, i.e., SUV without AC could underestimate the true activity at this level. For subcutaneous tumors, the attenuation was 13 ± 4% (9-17%), for kidneys 20 ± 1% (19-21%), and for bladder 18 ± 3% (15-21%). The FBP reconstructed images showed almost the same attenuation levels as the MAP reconstructed images for all organs. CONCLUSIONS The annihilation photons are suffering attenuation even in small subjects. Both PET-based and CT-based are adequate as AC methods. The amplitude of the AC recovery could be overestimated using the uniform map. Therefore, application of a global attenuation factor on PET data might not be accurate for attenuation correction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of state-of-the-art atlas-based bone segmentation approaches from brain MR images for MR-only radiation planning and PET/MR attenuation correction

Introduction: Magnetic Resonance (MR) imaging has emerged as a valuable tool in radiation treatment (RT) planning as well as Positron Emission Tomography (PET) imaging owing to its superior soft-tissue contrast. Due to the fact that there is no direct transformation from voxel intensity in MR images into electron density, itchr('39')s crucial to generate a pseudo-CT (Computed Tomography) image ...

متن کامل

The influence of misregistration between CT and SPECT images on the accuracy of CT-based attenuation correction of cardiac SPECT/CT imaging: Phantom and clinical studies

Introduction: Integration of single photon emission computed tomography (SPECT) and computed tomography (CT) scanners into SPECT/CT hybrid systems permit detection of coronary artery disease in myocardial perfusion imaging (MPI). Misregistration between CT and emission data can produce some errors in uptake value of SPECT images. The aim of this study was evaluate the influence...

متن کامل

Computed tomography based attenuation correction in PET/CT: Principles, instrumentation, protocols, artifacts and future trends

  The advent of dual-modality PET/CT imaging has revolutionized the practice of clinical oncology, cardiology and neurology by improving lesions localization and the possibility of accurate quantitative analysis. In addition, the use of CT images for CT-based attenuation correction (CTAC) allows to decrease the overall scanning time and to create a noise-free attenuat...

متن کامل

Estimation of fetal absorbed dose from low-dose attenuation-correction CT in PET / CT imaging by using the Body Builder Phantom

One of the methods of studying the physiology and metabolism of important tissues such as the heart, brain and cancer tumors is the use of PET/CT System. A small number of patients are pregnant women who undergo a PET/CT scan due to lack of knowledge about pregnancy or due to dire clinical need. The final dose received by the fetus is based on three factors: the absorbed dose of the fetal tissu...

متن کامل

Using 31P-MRI of hydroxyapatite for bone attenuation correction in PET-MRI: proof of concept in the rodent brain

BACKGROUND The correction of γ-photon attenuation in PET-MRI remains a critical issue, especially for bone attenuation. This problem is of great importance for brain studies due to the density of the skull. Current techniques for skull attenuation correction (AC) provide indirect estimates of cortical bone density, leading to inaccurate estimates of brain activity. The purpose of this study was...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Diagnostics

دوره 2 4  شماره 

صفحات  -

تاریخ انتشار 2012